
 A super MHV vertex expansion for   = 4 SYM theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP05(2009)072

(http://iopscience.iop.org/1126-6708/2009/05/072)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:18

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/05
http://iopscience.iop.org/1126-6708/2009/05/072/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
5
(
2
0
0
9
)
0
7
2

Published by IOP Publishing for SISSA

Received: March 18, 2009

Accepted: April 25, 2009

Published: May 18, 2009

A super MHV vertex expansion for N = 4 SYM

theory

Michael Kiermaiera and Stephen G. Naculichb

aCenter for Theoretical Physics, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
bDepartment of Physics, Bowdoin College,

Brunswick, ME 04011, U.S.A.

E-mail: mkiermai@mit.edu, naculich@bowdoin.edu

Abstract: We present a supersymmetric generalization of the MHV vertex expansion for

all tree amplitudes in N = 4 SYM theory. In addition to the choice of a reference spinor,

this super MHV vertex expansion also depends on four reference Grassmann parameters.

We demonstrate that a significant fraction of diagrams in the expansion vanishes for a

judicious choice of these Grassmann parameters, which simplifies the computation of am-

plitudes. Even pure-gluon amplitudes require fewer diagrams than in the ordinary MHV

vertex expansion.

We show that the super MHV vertex expansion arises from the recursion relation

associated with a holomorphic all-line supershift. This is a supersymmetric generalization

of the holomorphic all-line shift recently introduced in arXiv:0811.3624. We study the

large-z behavior of generating functions under these all-line supershifts, and find that

they generically provide 1/zk falloff at (Next-to)kMHV level. In the case of anti-MHV

generating functions, we find that a careful choice of shift parameters guarantees a stronger

1/zk+4 falloff. These particular all-line supershifts may therefore play an important role in

extending the super MHV vertex expansion to N = 8 supergravity.

Keywords: Supersymmetric gauge theory, Extended Supersymmetry

ArXiv ePrint: 0903.0377

c© SISSA 2009 doi:10.1088/1126-6708/2009/05/072

mailto:mkiermai@mit.edu
mailto:naculich@bowdoin.edu
http://arxiv.org/abs/0903.0377
http://dx.doi.org/10.1088/1126-6708/2009/05/072


J
H
E
P
0
5
(
2
0
0
9
)
0
7
2

Contents

1 Introduction 1

2 Review 3

3 The super MHV vertex expansion 5

3.1 NMHV amplitudes 5

3.2 Simplified NMHV amplitude computations 8

3.3 All tree amplitudes 11

3.4 Simplification of general amplitude computations 11

4 All-line supershifts 14

4.1 Anti-MHV generating functions 16

4.2 NkMHV generating functions under all-line supershifts 18

5 The super MHV vertex expansion from all-line supershifts 19

5.1 All-line supershift recursion relations 19

5.2 NMHV generating function 20

5.3 N2MHV generating function 21

5.4 All tree amplitudes 22

6 Discussion 23

A Large-z falloff under holomorphic all-line supershifts 25

A.1 FNkMHV
n ∼ 1/zk using the super BCFW recursion relations 25

A.2 FNkMHV
n ∼ 1/zk using the super MHV vertex expansion 26

1 Introduction

On-shell tree-level scattering amplitudes exhibit a simplicity that is not at all evident from

standard Feynman diagram calculations. This simplicity can be uncovered using recursion

relations for on-shell amplitudes, of which the MHV vertex expansion [1] and the BCFW

recursion relation [2, 3] are prominent examples. Recursion relations express an on-shell

amplitude in terms of simpler on-shell amplitudes with fewer external legs, thus in principle

allowing a recursive computation of arbitrarily complicated tree amplitudes.

The MHV vertex expansion expresses an amplitude as a sum over diagrams, each of

which is a product of MHV amplitudes connected by scalar propagators. The individual

diagrams depend on an arbitrarily-chosen reference spinor |X], but the sum of diagrams

is independent of |X]. The MHV vertex expansion is a convenient method for computing
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amplitudes due to the simplicity of its basic building blocks, the MHV subamplitudes.

The MHV vertex expansion reproduces the correct on-shell tree amplitudes both in pure

Yang-Mills theory [4] and in N = 4 SYM theory [5, 6].

Classes of amplitudes of N = 4 SYM theory that are related by supersymmetric

Ward identities [7–9] can be conveniently packaged into generating functions (also called

superamplitudes). A generating function for n-point amplitudes depends not only on the

momenta pi of the external particles, but also on 4n Grassmann variables ηia. (Here,

a = 1, 2, 3, 4 is an SU(4) index.) Any particular amplitude can be obtained by acting on

the generating function with a corresponding Grassmann differential operator [10]. The

generating function for MHV amplitudes was first given in ref. [11]. Beyond the MHV

level, a generating function for N = 4 SYM amplitudes can be represented as a sum over

terms involving dual superconformal invariants. At the NMHV level, this was carried out

in ref. [12]. The generating function for all tree amplitudes of N = 4 SYM theory was then

obtained in ref. [13] by explicitly solving a supersymmetric generalization of the BCFW

recursion relation [14–16]. Alternatively, a generating function beyond the MHV level can

be written as a sum over the diagrams of the MHV vertex expansion. At the NMHV

level, this form of the generating function was first presented in ref. [17]. For general tree

amplitudes in N = 4 SYM theory, an explicit representation of the generating function

associated with the MHV vertex expansion was derived in ref. [6].

In this paper we present an alternative representation for N = 4 SYM generating

functions, based on a new recursion relation, the super MHV vertex expansion. The super

MHV vertex expansion is a natural generalization of the ordinary MHV vertex expansion,

and can be derived from a supersymmetry transformation acting on the latter. The dia-

grams of the super MHV vertex expansion depend not only on a reference spinor |X], but

also on an arbitrarily-chosen set of four reference Grassmann parameters ηXa. The sum

of diagrams is, of course, independent of these choices of reference parameters. With the

choice ηXa = 0, the super MHV vertex expansion reduces to the ordinary MHV vertex

expansion, but for well-chosen values of ηXa, the super MHV vertex expansion contains

significantly fewer diagrams. It can thus be used to simplify the computation of both

generic and pure-gluon amplitudes.

The computational simplification occurs because each of the four ηXa can be chosen

to eliminate all diagrams from the super MHV vertex expansion which contain an internal

line with a particular momentum channel. As the same momentum channel generically

occurs in many diagrams, and as four distinct channels can be eliminated, many diagrams

can be made to vanish in this way. Surprisingly, even the computation of pure-gluon tree

amplitudes, which coincide with gluon amplitudes of gauge theory with no supersymmetry,

can be simplified using the super MHV vertex expansion. We illustrate the simplified

computation of amplitudes and the counting of eliminated diagrams in examples.1

Recursion relations can be derived from the analytic behavior of an on-shell amplitude

under a complex shift of its external momenta, and different shifts generically lead to differ-

1 For a quantitative comparison of the number of diagrams in the super MHV vertex expansion to the

ordinary MHV vertex expansion, the reader is referred to table 1 in section 3.4.
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ent recursion relations [3, 4]. Recursion relations were initially developed using shifts of a

subset of the external momenta. However, the ordinary MHV vertex expansion most natu-

rally follows from a holomorphic all-line shift, which deforms all the external momenta [6].

We show that the super MHV vertex expansion introduced in this paper follows nat-

urally from the behavior of generating functions under a holomorphic all-line supershift.

This supershift is a generalization of the holomorphic all-line shift presented in ref. [6], and

it shifts not only the external momenta but also the Grassmann variables ηia appearing in

the generating functions. This is analogous to the generalization of the BCFW two-line

shift to the two-line supershift recently introduced in ref. [14–16] and applied in ref. [13].

We prove that N = 4 SYM generating functions beyond the MHV level vanish when the

complex shift parameter z of the all-line supershift becomes large. This supershift therefore

yields a valid recursion relation, which in turn generates the super MHV vertex expansion.

As in the super BCFW recursion relation, which follows from the two-line supershift, the

diagrams in the super MHV vertex expansion of an amplitude do not have an immediate

interpretation as products of ordinary tree amplitudes. Specific amplitudes, however, are

readily computed directly from the generating function.

We examine the behavior of anti-MHV generating functions under holomorphic all-

line supershifts in detail, and find that the falloff at large z is faster when the choices

of reference spinor |X] and Grassmann parameters ηXa are correlated in a certain way.

The analysis of this special case is motivated by a possible future application of all-line

supershift recursion relations to N = 8 supergravity. In fact, as we will argue, the extra

suppression implies that a super MHV vertex expansion for N = 8 supergravity must exist

at least for all anti-MHV amplitudes.

This paper is organized as follows. In section 2, we review MHV amplitudes and the

concept of generating functions in N = 4 SYM theory. In section 3, we present the super

MHV vertex expansion as a generalization of the ordinary MHV vertex expansion. We

discuss its properties and demonstrate how it can simplify the computation of amplitudes.

We introduce holomorphic all-line supershifts in section 4. We study the large z behavior

of generating functions under these shifts both for generic and special choices of shift

parameters. In section 5, we show that the super MHV vertex expansion arises from the

recursion relations associated with holomorphic all-line supershifts. Finally, in section 6,

we discuss the relation of our work to other recent developments. We also comment on the

prospects of generalizing the super MHV vertex expansion to N = 8 supergravity.

2 Review

The simplest on-shell amplitudes in N = 4 SYM theory are n-point MHV amplitudes. The

MHV sector contains amplitudes with negative helicity gluons on two lines and positive

helicity gluons on the remaining lines, together with all amplitudes related to these by

supersymmetry. An n-point MHV amplitude takes the simple form2

AMHV
n (1, . . . , n) =

〈. . .〉 〈. . .〉 〈. . .〉 〈. . .〉

cyc(1, . . . , n)
, with cyc(1, . . . , n) =

n
∏

i=1

〈i, i + 1〉 . (2.1)

2Throughout this paper, we use the spinor-helicity formalism, with the conventions summarized in

appendix A of ref. [10].
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The four angle brackets 〈. . .〉 in the numerator depend on the choice of states on the external

lines 1, . . . , n. For the pure-gluon MHV amplitude with negative helicity gluons on lines

i and j, for example, the numerator takes the form 〈ij〉4, and we obtain the well-known

Parke-Taylor formula [18]:

AMHV
n (. . . i−. . . j−. . .) =

〈ij〉4

cyc(1, . . . , n)
. (2.2)

All n-point MHV amplitudes can be conveniently encapsulated in the n-point MHV

generating function (or superamplitude) [11]

FMHV
n (ηia) =

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(1, . . . , n)
with δ(8)

(

n
∑

i=1

|i〉ηia

)

=
1

24

4
∏

a=1

n
∑

i,j=1

〈ij〉ηiaηja . (2.3)

Specific amplitudes may then be extracted from FMHV
n (ηia) by acting with an eighth-order

Grassmann differential operator D(8) built from operators associated with the external

states of the amplitude:

AMHV
n (1, . . . , n) = D(8)FMHV

n (ηia) . (2.4)

The Grassmann differential operators associated with a particular choice of external particle

on line i, in order of increasing helicity, are given by [10]:

D−
i =

∂4

∂ηi1∂ηi2∂ηi3ηi4
, Dabc

i =
∂3

∂ηia∂ηib∂ηic
, Dab

i =
∂2

∂ηia∂ηib

, Da
i =

∂

∂ηia
, D+

i =1 .

(2.5)

The indices a, b, c = 1, . . . , 4 on the operators Dabc
i , Dab

i , and Da
i associated with scalars

and gluinos are SU(4) indices, and distinct choices of SU(4) indices correspond to distinct

choices of scalars and gluinos. The pure-gluon MHV amplitude with negative helicity

gluons on lines i and j given in eq. (2.2) is now readily obtained from FMHV
n (ηia) as

D(8) = D−
i D−

j =⇒ AMHV
n (. . . i−. . . j−. . .) = D−

i D−
j F

MHV
n (ηia) =

〈ij〉4

cyc(1, . . . , n)
. (2.6)

All non-MHV n-point amplitudes may be classified as (Next-to)kMHV amplitudes for

integer k between 1 and n−4.3 The NkMHV sector contains amplitudes with k+2 negative

helicity gluons and n − k − 2 positive helicity gluons, together with all amplitudes related

to these by supersymmetry. All NkMHV amplitudes may also be packaged into generating

functions FNkMHV
n (ηia), from which a specific amplitude ANkMHV

n may be extracted through

ANkMHV
n (1, . . . , n) = D(8+4k)FNkMHV

n (ηia) . (2.7)

The order 8 + 4k Grassmann differential operator D(8+4k) is built from a product of oper-

ators in (2.5) associated with the states on each external line i.

3The maximal value k = n − 4 corresponds to anti-MHV amplitudes, which can be expressed as in

eq. (2.1), but with angle brackets replaced by square brackets.
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3 The super MHV vertex expansion

In this section, we explain the super MHV vertex expansion and explore its consequences.

In section 3.1, we review the ordinary MHV vertex expansion for NMHV amplitudes and

present the super MHV vertex expansion as its generalization. We also show that the sum

rule recently found in ref. [6] is an immediate consequence of this expansion. We demon-

strate in section 3.2 that the reference Grassmann parameters of the super MHV vertex

expansion can be chosen so as to simplify NMHV amplitude computations. In section 3.3

we generalize the super MHV vertex expansion to all tree amplitudes in N = 4 SYM theory,

and in section 3.4 we analyze the computational simplifications for general tree amplitudes.

3.1 NMHV amplitudes

The ordinary MHV vertex expansion [1] gives a simple prescription to compute arbitrary

tree-level amplitudes in N = 4 SYM theory. At the NMHV level, for example, one is

instructed to sum over all possible diagrams in which an n-point NMHV amplitude ANMHV
n

can be split into two MHV subamplitudes I1 and I2, connected by an internal line of

momentum Pα (see figure 1a). Each diagram is characterized by the subset α of external

lines whose momenta flow into the internal line, i.e.

Pα =
∑

i∈α

pi . (3.1)

In figure 1a, the set α thus consists of all external lines on subamplitude I1.
4 The sum over

diagrams gives the desired NMHV amplitude:

ANMHV
n (1, . . . , n) =

∑

diagrams α

AMHV(I1)
1

P 2
α

AMHV(I2) . (3.2)

The momentum Pα of the internal line is not null, and we thus need to explain how to

treat the angle brackets |Pα〉 which are needed to compute the MHV subamplitudes in

eq. (3.2). The CSW prescription [1] instructs us to use

|Pα〉 ≡ Pα|X] , (3.3)

where |X] is an arbitrarily chosen reference spinor. Each diagram in eq. (3.2) will generically

depend on the choice of |X], but their sum is guaranteed to reproduce the correct amplitude

independently of the chosen reference spinor [4, 5].

All n-point NMHV amplitudes can be packaged into an NMHV generating function,

in terms of which the MHV vertex expansion (3.2) may be written as [17]

FNMHV
n

(

ηia

)

=
∑

diagrams α

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)P 2
α cyc(I2)

4
∏

a=1

∑

i∈α

〈iPα〉ηia . (3.4)

4Note that all external momenta pi are outgoing in our conventions, which explains the direction of the

arrow on the internal line Pα.
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Figure 1. The diagrams of the MHV vertex expansion at the (a) NMHV, (b) N2MHV, and (c)

N3MHV level.

Any particular NMHV amplitude can be obtained from this expression by using eq. (2.7)

with k = 1.

To define a supersymmetric generalization of eq. (3.4), we first recall that supercharges

[Qa| and |Q̃a〉 were defined in ref. [10] as

|Q̃a〉 ≡
n
∑

i=1

|i〉 ηia , [Qa| ≡
n
∑

i=1

[i|
∂

∂ηia
. (3.5)

On a function f(ηia), [Qa| generates the SUSY transformation

f(ηia) −→ f̃(ηia) ≡ exp
(

[Qa ǫa]
)

f(ηia) = f
(

ηia + [ǫa i]
)

(3.6)

and in particular

F̃NMHV
n

(

ηia

)

≡ exp
(

[Qa ǫa]
)

FNMHV
n

(

ηia

)

= FNMHV
n

(

ηia + [ǫa i]
)

. (3.7)

But since the generating function (3.4) encodes on-shell amplitudes, it must be SUSY

invariant:5

[Qa ǫa]F
NMHV
n (ηia) = 0 . (3.8)

Therefore, although each individual diagram in (3.4) transforms non-trivially under su-

persymmetry, the function F̃NMHV
n (ηia

)

is equal to FNMHV
n (ηia

)

after summing over dia-

grams. Thus F̃NMHV
n (ηia

)

is a valid generating function of NMHV amplitudes in N = 4

SYM theory.

Let us now choose

[ǫa| = [Y |ηXa with [XY ] = 1 , (3.9)

where we picked the normalization condition for later convenience. Then F̃NMHV
n (ηia; ηXa),

defined through eqs. (3.7) and (3.9), is the super MHV vertex expansion of the NMHV

5For the NMHV generating function in the representation (3.4), this was confirmed explicitly in ref. [10].
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generating function. Using
∑

i∈α

〈iPα〉
(

ηia + [Y i]ηXa

)

=
∑

i∈α

(

〈iPα〉ηia + [Y i]〈i|Pα|X]ηXa

)

=
∑

i∈α

〈iPα〉ηia + P 2
α ηXa , (3.10)

the super MHV vertex expansion takes the simple form6

F̃NMHV
n (ηia; ηXa) =

∑

diagrams α

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)P 2
α cyc(I2)

4
∏

a=1

[

∑

i∈α

〈iPα〉ηia + P 2
α ηXa

]

. (3.11)

The individual terms of eq. (3.11) depend both on a choice of reference spinor |X] and

on a choice of four reference Grassmann parameters ηXa. For any choice of |X] and ηXa,

F̃NMHV
n (ηia; ηXa) is the generating function of NMHV amplitudes, which are obtained, as

in eq. (2.7), by applying the twelfth-order Grassmann differential operator D(12) associated

with the external states of the amplitude:

ANMHV
n (1, . . . , n) = D(12)F̃NMHV

n (ηia; ηXa) . (3.12)

If the Grassmann differential operators in D(12) do not act on ηXa, eq. (3.12) reproduces the

ordinary MHV vertex expansion. However, if we choose each ηXa to be a linear combination

of the Grassmann variables η1a, . . . , ηna associated with external states, then the operators

in D(12) do indeed act on ηXa. With such a choice, F̃NMHV
n (ηia; ηXa) is, diagram by

diagram, a sum of twelfth-order monomials in the Grassmann variables ηia, each monomial

containing three powers of ηia for each fixed SU(4) index a = 1, 2, 3, 4. While eq. (3.8)

guarantees the equivalence of F̃NMHV
n (ηia; ηXa) and FNMHV

n (ηia), they lead to distinct

diagrammatic expansions for amplitudes. Therefore the super MHV vertex expansion is a

non-trivial generalization of the ordinary MHV vertex expansion when each ηXa is chosen

as some linear combination of the external ηia.

As F̃NMHV
n (ηia; ηXa) is independent of ηXa after summing over diagrams, its derivative

with respect to each ηXa must vanish. We can thus derive sum rules from eq. (3.11) by

differentiation. A particularly interesting sum rule can be obtained by differentiating off

the entire dependence of F̃NMHV
n (ηia; ηXa) on ηXa, yielding

0 =

[

4
∏

a=1

∂

∂ηXa

]

F̃NMHV
n (ηia; ηXa) =

∑

diagrams α

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)P 2
α cyc(I2)

(

P 2
α

)4
. (3.13)

Pulling out an overall diagram-independent factor of δ(8)(
∑

i |i〉ηia)/cyc(1, . . . , n),

we obtain

0 =
∑

diagrams α

Wα

(

P 2
α

)4
with Wα ≡

cyc(1, . . . , n)

cyc(I1)P 2
α cyc(I2)

. (3.14)

This is the main sum rule derived in section 8.4 of ref. [6], which now finds a natural

interpretation as an immediate consequence of the ηXa independence of the super MHV

vertex expansion.

6 For ηXa = 0, the super MHV vertex expansion (3.11) manifestly reduces to the ordinary MHV vertex

expansion (3.4).
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3.2 Simplified NMHV amplitude computations

At first sight, the ηXa dependence of the super MHV vertex expansion (3.11) may seem

like an unnecessary complication. This would suggest that the choice ηXa = 0, which

reduces it to the ordinary MHV vertex expansion, is most convenient. However, inspection

of eq. (3.11) shows that we can choose the ηXa in such a way that certain diagrams in the

generating function vanish identically. For example, pick any four diagrams in the MHV

vertex expansion and denote them by β1, β2, β3, and β4. By choosing

ηXa = −
1

P 2
βa

∑

i∈βa

〈iPβa
〉ηia , (3.15)

we guarantee that the four diagrams βa no longer contribute to the sum over α in the

generating function F̃NMHV
n (ηia; ηXa). Note that this implies that these four diagrams do

not contribute to any amplitude ANMHV
n computed from eq. (3.11). We have chosen each

ηXa as a different linear combination of the ηia, to maximize the simplification. We obtain

F̃NMHV
n (ηia; ηXa) =

∑

diagrams

α6=β1,β2,β3,β4

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)P 2
α cyc(I2)

4
∏

a=1

[

∑

i∈α

〈iPα〉ηia −
P 2

α

P 2
βa

∑

i∈βa

〈iPβa
〉ηia

]

.

(3.16)

Here, we have explicitly excluded the diagrams β1, . . . , β4 in the sum, as diagrams with

α = βa involve a vanishing factor in the product over a and therefore do not contribute.

At the NMHV level, the super MHV vertex expansion thus allows us to eliminate four

diagrams. As we will see below, many more diagrams can be eliminated at higher NkMHV

level. The simplification thus grows with increasing level in k. For now, let us illustrate

the power of the super MHV vertex expansion in the form (3.16) with an example.

Example: NMHV 5-point amplitudes. As the simplest example, let us consider

the NMHV amplitude with n = 5 external lines. (Five-point NMHV amplitudes can

be treated as anti-MHV, which provides a consistency check on our calculation. Note

that it is our goal to illustrate the advantages of the super MHV vertex expansion over

the ordinary MHV vertex expansion with this example; we do not expect to achieve

simplifications compared to the trivial anti-MHV computation.) Five diagrams contribute

to the ordinary MHV vertex expansion for the NMHV 5-point amplitude (see figure 2a).

With the choice (3.15) for ηXa, we can eliminate four of these from the super MHV vertex

expansion. For definiteness, we choose

β1 = {1, 2, 3} , β2 = {2, 3} , β3 = {5, 1} , β4 = {5, 1, 2} . (3.17)

The unique diagram which then contributes to F̃NMHV
5 (ηia; ηXa) is the diagram α = {1, 2}

(see figure 1b). Explicitly, eq. (3.16) gives

F̃NMHV
5 =

δ(8)
(
∑n

i=1 |i〉ηia

)
∏4

a=1

[

〈1P12〉η1a+〈2P12〉η2a−
(

P 2
12/P

2
βa

)
∑

k∈βa
〈kPβa

〉ηka

]

〈12〉〈2P12〉〈P121〉 P 2
12 〈34〉〈45〉〈5P12〉〈P123〉

.

(3.18)

– 8 –
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Figure 2. (a) The five diagrams contributing to the ordinary MHV vertex expansion of 5-point

NMHV amplitudes. (b) The single remaining diagram that contributes to the super MHV vertex

expansion.

To test this generating function, let us compute the gluon amplitude

A5(1
+, 2+, 3−, 4−, 5−). Since this amplitude is anti-MHV, the conjugate of the Parke-

Taylor formula immediately gives

A5(1
+, 2+, 3−, 4−, 5−) =

[12]4

[12][23][34][45][51]
. (3.19)

Computing this amplitude with the ordinary MHV vertex expansion, however, is messy and
the simple result (3.19) is difficult to obtain analytically. Four diagrams contribute to its
expansion; in fact, precisely the four diagrams β1, . . . , β4 listed in eq. (3.17). In the super
MHV vertex expansion the computation simplifies dramatically. Acting with D−

3 D−
4 D−

5
on eq. (3.18), we find

D−
3 D−

4 D−
5 F̃NMHV

5

=

∏4
a=1

∂
∂η3a

∂
∂η4a

∂
∂η5a

[

1
2

∑n
i,j=1〈ij〉ηiaηja

][

〈1P12〉η1a+〈2P12〉η2a−
(

P 2
12/P 2

βa

)
∑

k∈βa
〈kPβa

〉ηka

]

〈12〉〈2P12〉〈P121〉 P 2
12 〈34〉〈45〉〈5P12〉〈P123〉

.

(3.20)

Consider first the factors a = 1 and a = 2. In both cases, the derivatives with respect to

η4a and η5a must act on the first factor, and we obtain

∂

∂η3a

∂

∂η4a

∂

∂η5a

[1

2

n
∑

i,j=1

〈ij〉ηiaηja

][

〈1P12〉η1a + 〈2P12〉η2a −
(

P 2
12/P

2
βa

)

∑

k∈βa

〈kPβa
〉ηka

]

−→ 〈45〉
P 2

12

P 2
123

〈3P123〉 =
[12]〈12〉〈3P12〉

[45]
for a = 1 ,

−→ 〈45〉
P 2

12

P 2
23

〈3P23〉 = −
〈45〉[12]〈12〉[2X]

[23]
= −

〈45〉[12]〈1P12〉

[23]
for a = 2 . (3.21)
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The remaining cases a = 3 and a = 4 follow by relabeling from the cases a = 2 and a = 1,
respectively. We obtain

D−
3 D−

4 D−
5 F̃NMHV

5

=

(

[12]〈12〉〈3P12〉/[45]
)

·
(

−〈45〉[12]〈1P12〉/[23]
)

·
(

−〈34〉[12]〈2P12〉/[51]
)

·
(

[12]〈12〉〈5P12〉/[34]
)

〈12〉〈2P12〉〈P121〉 P 2
12 〈34〉〈45〉〈5P12〉〈P123〉

=
[12]4

[12][23][34][45][51]
. (3.22)

We have thus reproduced the simple anti-MHV result (3.19).

The simplicity of this computation was not just a consequence of our particular choice

of external states. In fact, the generating function F̃NMHV
5 (ηia; ηXa) can be manipulated

to explicitly obtain the anti-MHV generating function. For example, the a = 2 factor in

eq. (3.18) gives

〈1P12〉η1a + 〈2P12〉η2a −
P 2

12

P 2
23

(

〈2P23〉η2a + 〈3P23〉η3a

)

=
1

[23]

(

[23]〈1P12〉η1a − 〈12〉
(

[23][1X] + [12][3X]
)

η2a + [12]〈12〉[2X]η3a

)

=
〈1P12〉

[23]

(

[23]η1a + [31]η2a + [12]η3a

)

, (3.23)

where we used the Schouten identity |1][23] + cyclic = 0 . The other terms can be treated
analogously. The resulting prefactors 〈iP12〉 cancel the four |X]-dependent angle brackets
in the denominator of eq. (3.18), and we obtain

F̃NMHV
5 =

δ(8)
(
∑n

i=1 |i〉ηia

)

〈45〉2〈34〉2
∏5

i=1[i, i + 1]

2
∏

a=1

(

[23]η1a +[31]η2a +[12]η3a

)

4
∏

a=3

(

[25]η1a +[51]η2a +[12]η5a

)

,

(3.24)

which is equivalent to the anti-MHV generating function for the 5-point amplitude pre-

sented in [5, 19]

FMHV
5 =

δ(8)
(
∑n

i=1 |i〉ηia

)

〈12〉4
∏5

i=1[i, i + 1]

4
∏

a=1

(

[34]η5a + [45]η3a + [53]η4a

)

. (3.25)

To see this equivalence, we notice that the lines 1 and 2 that are arbitrarily singled out

in eq. (3.25) can in principle be chosen differently for each value of a. In eq. (3.24), lines 4

and 5 are singled out for a = 1, 2 , and lines 3 and 4 are singled out for a = 3, 4 .

NMHV amplitudes with n ≥ 6 external states. For n ≥ 6 external states, more

than one diagram contributes to the super MHV vertex expansion of the NMHV generating

function. For n = 6 (n = 7) there are a total of 9 diagrams (14 diagrams) in the ordinary

MHV vertex expansion. As four of these diagrams can be made to vanish by choosing ηXa

as in eq. (3.15), the super MHV vertex expansion eliminates almost one-half (one-third) of

the diagrams. Many more diagrams can be eliminated for NkMHV amplitudes with k > 1,

and we proceed to this case now.
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3.3 All tree amplitudes

For a general n-point (Next-to)kMHV tree amplitude ANkMHV
n , the ordinary MHV vertex

expansion instructs us [1] to sum over all possible diagrams in which the amplitude can

be split into k + 1 MHV subamplitudes I1, I2,. . . , Ik+1 , connected by k internal lines of

momenta Pα1
, . . . , Pαk

. (See figures 1b and 1c for the types of MHV vertex diagrams which

can occur at N2MHV and N3MHV level, respectively.) Each diagram is characterized by

the subsets α1, . . . , αk of external lines whose momenta flow into the internal lines, i.e.

PαA
=
∑

i∈αA

pi . (3.26)

The sum over all possible such MHV vertex diagrams gives the desired NkMHV amplitude:

ANkMHV
n (1, . . . , n) =

∑

MHV diagrams

{α1,...,αk}

AMHV(I1) · · · A
MHV(Ik+1)

P 2
α1

· · ·P 2
αk

, (3.27)

with the CSW prescription understood for each occurrence of the angle spinors |PαA
〉 in

eq. (3.27):

|PαA
〉 ≡ PαA

|X] . (3.28)

The generating function associated with the ordinary MHV vertex expansion is [6]

FNkMHV
n (ηia) =

∑

MHV diagrams

{α1,...,αk}

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1) · · · cyc(Ik+1)

k
∏

A=1

[

1

P 2
αA

4
∏

a=1

∑

i∈αA

〈iPαA
〉ηia

]

. (3.29)

To obtain the super MHV vertex expansion, we act with a SUSY transformation on

the generating function (3.29):

F̃NkMHV
n

(

ηia

)

= exp ([Qa ǫa]) FNkMHV
n

(

ηia

)

= FNkMHV
n

(

ηia + [ǫa i]
)

. (3.30)

For the SUSY parameter, we again choose the [ǫa| defined in eq. (3.9). The super MHV
vertex expansion for the NkMHV generating function then takes the simple form

F̃NkMHV
n (ηia; ηXa) =

∑

MHV diagrams

{α1,...,αk}

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1) · · · cyc(Ik+1)

k
∏

A=1

1

P 2
αA

4
∏

a=1

[

∑

i∈αA

〈iPαA
〉ηia + P 2

αA
ηXa

]

.

(3.31)

Acting on F̃NkMHV
n (ηia; ηXa) with the order 8+4k Grassmann differential operator D(8+4k)

associated with an amplitude ANkMHV
n , we obtain, diagram by diagram, the super MHV

vertex expansion for that amplitude.

3.4 Simplification of general amplitude computations

To simplify general amplitude calculations, we choose the same strategy as in section 3.2

above. By picking ηXa as in eq. (3.15) for some choice of channels β1, β2, β3 , and β4, all
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MHV vertex diagrams for which any internal line αA coincides with any βa vanish:

αA = βa for any A = 1, . . . , k , and any a = 1, . . . , 4 =⇒ diagram vanishes .

(3.32)

For generic amplitude computations7 the super MHV vertex expansion is most efficient if

we maximize the number of diagrams which vanish by eq. (3.32). Different choices of βa

can lead to a different number of vanishing diagrams. Two simple guiding principles should

be used for the choice of βa:

1. The channels βa should appear in as many MHV vertex diagrams as pos-

sible.

Consider 10-point N3MHV amplitudes. The channel α = {1, 2, 3, 4, 5} occurs in 123

distinct MHV vertex diagrams, while the channel α = {1, 2} occurs in 225 different

diagrams. The choice β1 = {1, 2} is thus more efficient because it eliminates 102

more diagrams than β1 = {1, 2, 3, 4, 5}.

2. The channels βa should, as far as possible, not occur in the same MHV

vertex diagrams.

In the 10-point N3MHV example, β1 = {1, 2} and β2 = {2, 3} cannot occur together

in any MHV vertex diagram. The channels β1 = {1, 2} and β2 = {3, 4}, on the other

hand, appear together as internal lines in 20 different MHV vertex diagrams. In

this case, β2 eliminates 20 diagrams that were already eliminated by β1. The total

number of eliminated diagrams is thus reduced by 20 as compared to the choice

β1 = {1, 2}, β2 = {2, 3}.

Whether two channels β1, β2 can occur together in an MHV vertex diagram can be

easily tested. If, possibly after using the freedom to relabel β1 ↔ β̄1 and β2 ↔ β̄2,

the sets β1 and β2 do not share any external lines (β1 ∩ β2 = ∅), then they can

appear as internal lines in the same MHV vertex diagram.8

In table 1, we summarize the number of diagrams eliminated from the generating function

for various choices of n and k. For simplicity we always used the choice

β1 = {1, 2} , β2 = {2, 3} , β3 = {3, 4} , β4 = {4, 5} (3.33)

for the counting of super MHV vertex diagrams in table 1.

The number of diagrams of the ordinary vertex expansion at n-point NkMHV level is

given [20] by the expression M(n, k) = 1
k+1

(

n−3
k

)(

n+k−1
k

)

. The number of diagrams of the

super MHV vertex expansion for the choice (3.33) is then given by the expression9

S(n, k) = M(n, k) − 4M(n − 1, k − 1) + 3M(n − 2, k − 2) . (3.34)

7If we want to use the super MHV vertex expansion to compute only one specific amplitude, or a specific

class of amplitudes (such as pure-gluon amplitudes), a different strategy is advisable. See discussion below.
8Here, β̄a denotes the complement of the set βa, regarded as a subset of all external lines {1, . . . , n}.
9We thank Marcus Spradlin for a question which prompted us to derive this expression after v1 of this

paper was submitted.
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k = 1 k = 2 k = 3 k = 4 k = 5

n=5 80% ordinary: 5

super: 1

n=6 44% ordinary: 9

super: 5
81% ordinary: 21

super: 4

n=7 29% ordinary: 14

super: 10
59% ordinary: 56

super: 23
82% ordinary: 84

super: 15

n=8 20% ordinary: 20

super: 16
44% ordinary: 120

super: 67
66% ordinary: 300

super: 103
83% ordinary: 330

super: 57

n=9 15% ordinary: 27

super: 23
34% ordinary: 225

super: 148
53% ordinary: 825

super: 387
69% ordinary: 1485

super: 453
83% ordinary: 1287

super: 219

n=10 11% ordinary: 35

super: 31
27% ordinary: 385

super: 280
44% ordinary: 1925

super: 1085
59% ordinary: 5005

super: 2065
72% ordinary: 7007

super: 1967

n=11 9% ordinary: 44

super: 40
22% ordinary: 616

super: 479
36% ordinary: 4004

super: 2545
50% ordinary: 14014

super: 6989
63% ordinary: 28028

super: 10483

n=12 7% ordinary: 54

super: 50
18% ordinary: 936

super: 763
31% ordinary: 7644

super: 5285
43% ordinary: 34398

super: 19537
55% ordinary: 91728

super: 41447

n=13 6% ordinary: 65

super: 61
16% ordinary:1365

super:1152
26% ordinary:13650

super:10038
38% ordinary: 76440

super: 47712
48% ordinary:259896

super:134316

n=14 5% ordinary: 77

super: 73
13% ordinary:1925

super:1668
23% ordinary:23100

super:17802
33% ordinary:157080

super:105288
43% ordinary:659736

super:376908

Table 1. Comparison of the number of diagrams in the ordinary MHV vertex expansion and

the super MHV vertex expansion for n-point NkMHV amplitudes in the range n = 5, . . . , 14 ,

k = 1, . . . , 5 . The percentage of eliminated diagrams is also displayed. (Amplitudes which are

anti-NqMHV with q < k and thus more efficiently computed using an anti-MHV vertex expansion

are displayed in gray.)

Using these analytic expressions for M(n, k) and S(n, k), the elimination ratio 1 − S/M ,

which is also displayed in table 1, can be easily analyzed. While the percentage of elim-

inated diagrams decreases with n at fixed k, the elimination ratio increases along the

diagonal, when k and n are increased simultaneously. Generically, the computationally

most challenging amplitudes are gluon amplitudes with an equal number of negative and

positive helicity legs (and amplitudes related to these by supersymmetry). For these 2m-

point N(m−2)MHV amplitudes, the elimination ratio remains non-zero even for m → ∞,

approaching 11/27 ≈ 41% in this limit.

Pure gluon amplitudes. If we consider the computation of a particular N = 4 SYM

amplitude, not every diagram contributes to its ordinary MHV vertex expansion. In fact,

there are diagrams for which no assignment of states to the internal lines can turn all

subamplitudes in the diagram into MHV vertices. A simple example is the 6-gluon ampli-

tude ANMHV
6 (1−, 2−, 3−, 4+, 5+, 6+), to which the diagrams α = {4, 5, 6}, {4, 5}, and {5, 6}

do not contribute, because the subamplitude containing the three negative helicity gluon

lines 1, 2, 3 cannot be MHV. More generally, each SU(4) index a imposes constraints on

the possible diagrams that contribute, and forces certain diagrams to vanish. For pure-

gluon amplitudes, all SU(4) indices appear on the same lines, and they thus all impose the

same constraints. Therefore, many more MHV vertex diagrams contribute to pure-gluon

amplitudes than to generic N = 4 SYM amplitudes.

In the super MHV vertex expansion, we choose the ηXa to eliminate diagrams. Such
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a choice, however, can cause diagrams to reappear that would have been absent in the

ordinary MHV vertex expansion. We witnessed this phenomenon in the example of the

5-point NMHV amplitude ANMHV
5 (1+, 2+, 3−, 4−, 5−) discussed in section 3.2. There, the

only diagram contributing to the super MHV vertex expansion was α = {1, 2}, precisely

the diagram that would not have contributed to the ordinary MHV vertex expansion.

If we are interested in one particular pure-gluon amplitude, and many diagrams for that

amplitude already vanish in its ordinary MHV vertex expansion, it is advisable to pick only

three channels β1, β2, β3, and to set ηX4 = 0. The constraints from the SU(4) index a = 4

then still enforce the vanishing of diagrams absent in its ordinary MHV vertex expansion.

As an example, consider the 8-point N2MHV amplitude

AN2MHV
8 (1−, 2−, 3−, 4−, 5+, 6+, 7+, 8+). Forty-four out of 120 diagrams contribute to

its ordinary MHV vertex expansion. We can eliminate 22 further diagrams by choosing

β1 = {3, 4}, β2 = {3, 4, 5}, and β3 = {4, 5} . The super MHV vertex expansion of this

amplitude thus only contains half as many non-vanishing diagrams as the ordinary MHV

vertex expansion. Although we could only use three of the βa to eliminate channels, this

elimination ratio of 50% is even better than the generic ratio of 44% given in table 1

for the 8-point N2MHV level. Despite its supersymmetric origin, the super MHV vertex

expansion is thus no less powerful when applied to QCD amplitudes.

4 All-line supershifts

In the next two sections, we will show that the super MHV vertex expansion presented

above follows naturally from the recursion relation associated with holomorphic all-line

supershifts. In the current section, we motivate and define holomorphic all-line supershifts,

and study the behavior of generating functions under these supershifts.

Supershifts were introduced in ref. [14–16] as a generalization of an ordinary two-line

shift in the BCFW approach [3]. An ordinary BCFW shift [p, q〉 is defined as

|p] → |p] + z|q] , |q〉 → |q〉 − z|p〉 , (4.1)

with all other angle and square spinors remaining unshifted. Under such a shift of spinors,

the scattering amplitude acquires a dependence on z. If the shift is such that the deformed

amplitude A(z) vanishes as z → ∞, then the shift gives rise to a valid BCFW recursion

relation for the amplitude. In ref. [3], it was shown that the validity of a shift depends on

the helicities of the lines p and q participating in the shift. Consequently, the generating

functions, which encode amplitudes of all helicities, will not generally vanish at large z

under a BCFW shift, though the coefficients of some of its η-monomials will.

A BCFW supershift [p, q〉 is a generalization of eq. (4.1) that acts on Grassmann

variables as well [13–16]:

|p] → |p] + z|q], |q〉 → |q〉 − z|p〉, ηpa → ηpa + zηqa , (4.2)

with all other angle spinors, square spinors, and Grassmann variables ηia remaining un-

shifted. The advantage of the supershift is that
∑n

i=1|i〉ηia remains invariant, which im-

proves the large z falloff of generating functions under this shift. For example, the MHV
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generating function

FMHV
n (ηia) =

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(1, . . . , n)
(4.3)

vanishes at least as 1/z for large z, for any choice of lines p and q (it goes as 1/z2 if p and q

are not adjacent). This behavior generalizes beyond the MHV level. Indeed, all generating

functions FNkMHV
n (ηia) vanish at large z for any choice of lines p and q and hence may be

represented by super BCFW recursion relations [13–16].

The MHV vertex expansion of an amplitude, on the other hand, may be derived from

a holomorphic shift, i.e.a shift that acts on square spinors only and leaves all angle spinors

invariant. A holomorphic all-line shift was defined in ref. [6] as

|i] → |i] + z ci|X], |i〉 → |i〉 for i = 1, . . . , n , (4.4)

where |X] is an arbitrary reference spinor, and the complex parameters ci are constrained

by momentum conservation to obey

n
∑

i=1

ci|i〉 = 0 . (4.5)

We also demand that the sum of momenta be unchanged under an all-line supershift only

when all external momenta are summed. Specifically, we require

∑

i∈α

ci|i〉 6= 0 (4.6)

for all proper subsets α of consecutive external lines. The MHV generating function (4.3)

is manifestly invariant under this shift. Furthermore, it was shown in ref. [6] that NkMHV

generating functions FNkMHV
n (ηia), and thus all NkMHV amplitudes, fall off at least as 1/zk

under an all-line shift. Therefore all amplitudes in N = 4 SYM theory may be represented

by the MHV vertex expansion.

We generalize the shift (4.4) to a holomorphic all-line supershift

|i] → |i] + z ci|X], |i〉 → |i〉, ηia → ηia + z ciηXa for i = 1, . . . , n , (4.7)

where, in addition to the reference spinor |X], we introduce four arbitrary reference Grass-

mann parameters ηXa. We still impose the conditions (4.5) and (4.6). The former in

particular implies that δ(
∑n

i=1|i〉ηia) is invariant under the supershift (4.7) since

n
∑

i=1

|i〉ηia →
n
∑

i=1

|i〉ηia + z
n
∑

i=1

ci|i〉ηXa =
n
∑

i=1

|i〉ηia . (4.8)

Consequently, the MHV generating function (4.3) is invariant under a holomorphic all-line

supershift. In section 4.1, we study the behavior of anti-MHV generating functions under

this shift. In section 4.2, we will show that the NkMHV generating function falls off at

least as 1/zk under an all-line supershift, and in section 5, we will use its recursion relation

to derive the super MHV vertex expansion.

– 15 –



J
H
E
P
0
5
(
2
0
0
9
)
0
7
2

4.1 Anti-MHV generating functions

We now consider the behavior of anti-MHV generating functions under supershifts. Due

to their simplicity, anti-MHV generating functions are the ideal testing ground to study

the large-z falloff of generating functions under supershifts. We will examine this falloff for

both generic holomorphic all-line supershifts and a particularly interesting restricted class

of such supershifts.

The n-point anti-MHV generating function, expressed in terms of the conjugate Grass-

mann variables η̄a
i , is given by

F
MHV
n (η̄a

i ) =
δ(8)
(
∑n

i=1 |i]η̄
a
i

)

∏n
i=1[i, i + 1]

. (4.9)

The numerator of the anti-MHV generating function,

δ(8)

(

n
∑

i=1

|i]η̄a
i

)

=
1

24

4
∏

a=1

n
∑

i,j=1

[i j] η̄a
i η̄a

j , (4.10)

may be recast as a function of ηia:

δ(8)

(

n
∑

i=1

|i]η̄a
i

)

GFT
−−−→

∏4
a=1

∑n
j1,...,jn=1 ǫj1j2···jn [j1j2] ηj3a · · · ηjna

[2 (n − 2)!]4
. (4.11)

Here, we used the Grassmann Fourier transform (GFT) [16, 19]:

f̄(η̄a
i )

GFT
−−−→ f(ηia) ≡

∫

∏

i,a

dη̄a
i exp

(

∑

b,j

ηjbη̄
b
j

)

f̄(η̄a
i ) . (4.12)

Hence the anti-MHV generating function is given by [5]

FMHV
n (ηia) =

∏4
a=1

∑n
j1,...,jn=1 ǫj1j2···jn [j1j2] ηj3a · · · ηjna

[2 (n − 2)!]4
∏n

i=1[i, i + 1]
. (4.13)

The sum over ǫj1j2···jn [j1j2] ηj3a · · · ηjna is invariant under a BCFW supershift (4.2).

Therefore the anti-MHV generating function, just as the MHV-generating function, falls

off as 1/z (or 1/z2) under a BCFW supershift.

Under a holomorphic all-line supershift (4.7), the sum over ǫj1j2···jn [j1j2] ηj3a · · · ηjna

generically picks up a piece linear in z; higher powers of z cancel due to the antisymmetry

of ǫj1j2···jn . Since each square bracket in the denominator of eq. (4.13) generically goes as

z, the anti-MHV generating function vanishes as 1/zn−4 for large z under a holomorphic

all-line supershift (4.7). Since an n-point anti-MHV amplitude is an NkMHV amplitude

with k = n − 4, we conclude that

FMHV
n (ηia) ∼

1

zk
(4.14)

under a generic holomorphic all-line supershift.
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While the falloff (4.14) is sufficient to derive all-line supershift recursion relations for

anti-MHV generating functions with n > 4 external legs, it is worthwhile to examine

whether the 1/zk falloff can be improved for a careful choice of shift parameters. This

possibility is interesting for two reasons. First of all, improved large z behavior implies the

presence of additional sum rules. Secondly, a faster falloff could justify a super MHV vertex

expansion for generating functions in N = 8 supergravity. The simplicity of the anti-MHV

generating functions allows us to explicitly test the possibility of improved large z behavior.

As we will now see, the anti-MHV generating function indeed falls off faster than

1/zn−4 under a restricted class of holomorphic all-line supershifts. Expand the square

spinor |X] and the Grassmann parameters ηXa in (4.7) as

|X] =
n
∑

i=1

di|i], ηXa =
n
∑

i=1

diηia . (4.15)

Note that we use the same expansion coefficients di for both |X] and ηXa, which is a very

special non-generic choice. Under such a supershift, one may show that

n
∑

j1,...,jn=1

ǫj1j2···jn [j1j2] ηj3a · · · ηjna →

(

1 + z

n
∑

i=1

cidi

)

n
∑

j1,...,jn=1

ǫj1j2···jn [j1j2] ηj3a · · · ηjna .

(4.16)

We now further restrict the parameters di in eq. (4.15) to satisfy

n
∑

i=1

cidi = 0 , (4.17)

making the numerator of eq. (4.13) invariant under the supershift. Since each square

bracket in the denominator of eq. (4.13) goes as z (for n > 4), the anti-MHV generating

function vanishes as 1/zn at large z. The generic 1/zk behavior under a holomorphic

all-line supershift is thus improved, and we have

FMHV
n (ηia) ∼

1

zk+4
for n > 4, when

n
∑

i=1

cidi = 0 . (4.18)

The significance of this result is that it implies the validity of a super MHV vertex expansion

for anti-MHV generating functions in N = 8 supergravity, as we will argue in section 6.

The improved falloff (4.18) does not hold for n = 4 external legs. As anti-MHV

four-point functions are also MHV, they must be invariant under any holomorphic all-line

supershift and cannot possibly go as 1/z4. In fact, the kinematics of four-point functions

ensures that the square brackets in the denominator of eq. (4.13) are invariant under

supershifts that satisfy the condition (4.17). The generating function for four-point anti-

MHV amplitudes is thus indeed invariant under such a supershift.

It is instructive to derive the result (4.18) in a different way by considering the anti-

MHV generating function in the form (4.9). When condition (4.17) holds, the linear shift

on ηia is equivalent to a linear shift on η̄a
i in the Fourier-transformed generating function
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F(η̄a
i ). In fact, for any functions f

(

ηia) and f̄
(

η̄a
i ) which are related by a Grassmann Fourier

transformation, one has

f
(

ηia + zci

∑

j djηja

) GFT
−−−→

∫

∏

i,a

dηia exp
(

∑

b,j

η̄b
jηjb

)

f
(

ηia + zci

∑

j djηja

)

=

∫

∏

i,a

dη′ia exp
(

∑

b,j

[

η̄b
j − z dj

∑

k ckη̄
b
k

]

η′jb

)

f
(

η′ia
)

= f̄
(

η̄a
i − z di

∑

j cj η̄
a
j

)

. (4.19)

Here, the condition (4.17) was necessary to show that the change of variables η′ia = ηia +

zci

∑

j djηja implies ηia = η′ia − zci

∑

j djη
′
ja and to guarantee that the measure is invariant

under the change of variables. We conclude that the conjugate Grassmann variables η̄a
i

transform linearly under a supershift:

ηia → ηia + z ci

n
∑

j=1

djηja ⇐⇒ η̄a
i → η̄a

i − z di

n
∑

j=1

cj η̄
a
j when

n
∑

i=1

cidi = 0 . (4.20)

Note that the roles of ci and di are reversed in the shifts of ηia and η̄a
i .

Since by eq. (4.15) we have

|i] → |i] + z ci

n
∑

j=1

dj |j] , (4.21)

it follows that
∑n

i=1|i]η̄
a
i and therefore δ(8)

(
∑n

i=1|i]η̄
a
i

)

is invariant under this restricted

class of supershifts.10 The improved 1/zn falloff is then manifest in the anti-MHV gener-

ating function (4.9).

4.2 NkMHV generating functions under all-line supershifts

We now show that generating functions for NkMHV amplitudes fall off at least as 1/zk

for large z under all-line supershifts with shift parameters |X] and ηXa. For k ≥ 1 these

supershifts thus give valid recursion relations. As we will show in the following section,

the associated recursion relations imply the super MHV vertex expansion. Our derivation

of the falloff is based on the ordinary MHV vertex expansion of the generating function,

whose validity was established in refs. [5, 6]. An alternative derivation, based on the super

BCFW recursion relations of ref. [13–16] is outlined in appendix A.1.

Consider the behavior of each of the terms in the ordinary MHV vertex expansion (3.29)

under a generic holomorphic all-line supershift (4.7). Crucially, we use a reference spinor

|Z] in the ordinary MHV vertex expansion that does not coincide with the spinor |X]

10If we impose the even stronger condition cidi = 0 for each i, then the holomorphic all-line supershift

is manifestly a composition of several [p, q〉 supershifts (4.2) and the invariance of
Pn

i=1
|i]η̄a

i automatically

follows. Note, though, that such a shift is no longer an all-line shift, as we need to set at least one ci = 0

to satisfy this stronger condition.
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appearing the supershift (4.7). We demand [XZ] 6= 0. The shift then acts on the CSW

spinors |PαA
〉 in an MHV vertex diagram as

|PαA
〉 = PαA

|Z] → P̂αA
|Z] = PαA

|Z] + z
∑

j∈αA

cj |j〉[XZ] . (4.22)

Condition (4.6) ensures that the O(z) term on the right hand side does not vanish. For

any external line i, and any two internal lines PαA
and PαB

of an MHV vertex diagram,

we then find the following shift dependence:

〈iP̂αA
〉 ∼ z , 〈P̂αA

P̂αB
〉 ∼ z2 . (4.23)

We can thus associate one power of z with each occurrence of |P̂αA
〉. As the CSW spinor

|P̂αA
〉 of each internal line αA appears four times in the cyclic factors of the denominator

of (3.29), we have
1

cyc(Î1) · · · cyc(Îk+1)
∼

1

z4k
. (4.24)

The spin factors in the numerator of (3.29) shift as

∑

i∈αA

〈iP̂αA
〉η̂ia = z2

∑

i,j∈αA

cicj〈ij〉[XZ]ηXa + O(z) = O(z) , (4.25)

thus overall the numerator goes at most as z4k. Taking into account the shift dependence

of each of the k propagators, 1/P̂ 2
αA

∼ 1/z , we conclude that the MHV vertex expansion

of the generating function, diagram by diagram, falls off at least as

FNkMHV
n (ηia) ∼

1

zk
(4.26)

under holomorphic all-line supershifts.

5 The super MHV vertex expansion from all-line supershifts

In this section we derive the super MHV vertex expansion from holomorphic all-line super-

shifts. The proof is a generalization of the derivation of the ordinary MHV vertex expansion

in ref. [6]. We will thus emphasize the new aspects of the current proof, referring the reader

to the details in ref. [6] for steps that proceed analogously.

5.1 All-line supershift recursion relations

We proved in section 4 that NkMHV generating functions FNkMHV
n (ηia) with k ≥ 1 vanish

as z → ∞ under an all-line supershift. All-line supershifts can thus be used to derive a

recursion relation for FNkMHV
n (ηia). Each diagram in the recursion relation is the product

of two generating functions, connected by a scalar propagator 1/P 2
α . We denote the set

of external states on one subamplitude by α, and their associated Grassmann variables by

{ηia}i∈α. Similarly, on the other subamplitude we denote the external states and associated

Grassmann variables by ᾱ and {ηia}i∈ᾱ, respectively. The generating functions of the two

subamplitudes also depend on the Grassmann variable ηPαa associated with the internal
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propagator line. In the recursion relation we need to carry out the intermediate state sum

by acting with the Grassmann differential operator D
(4)
α =

∏

a ∂/∂ηPαa. We thus obtain

FNkMHV
n (5.1)

=
1

2

k−1
∑

q=0

∑

α

D(4)
α

FNqMHV
(

α̂,−P̂α ; {η̂ia}i∈α , ηPαa

)

FN(k−q−1)MHV
(

ˆ̄α, P̂α ; {η̂ia}i∈ᾱ , ηPαa

)

P 2
α

∣

∣

∣

∣

z=zα

.

The notation α̂, ˆ̄α, P̂α, η̂ia indicates that the momenta and Grassmann variables of the

subamplitudes are shifted. They are evaluated at z = zα satisfying the pole condition

P̂ 2
α(z) = 0, i.e.

zα =
P 2

α
∑

i∈α ci〈i|Pα|X]
. (5.2)

Condition (4.6) ensures that zα is always well-defined, and thus all possible diagrams α

contribute to the recursion relation. Since P̂α is null when z = zα, we can write

P̂α = |P̂α〉[P̂α| =⇒ |P̂α〉 =
P̂α|X]

[P̂αX]
=

Pα|X]

[P̂αX]
. (5.3)

Finally, the symmetry factor 1
2 in eq. (5.1) is necessary because, for each channel α, we

now also include the equivalent term with α ↔ ᾱ in the sum.

5.2 NMHV generating function

At the NMHV level, all subamplitudes in the recursion relation (5.1) are MHV. Using the

MHV generating function (2.3) we obtain

FNMHV
n =

∑

diagrams α

D(4)
α

δ(8)
(
∑

i∈α |i〉η̂ia − |P̂α〉ηPαa

)

δ(8)
(
∑

i∈ᾱ |i〉η̂ia + |P̂α〉ηPαa

)

cyc(Î1) P 2
α cyc(Î2)

∣

∣

∣

∣

z=zα

.

(5.4)

where |P̂α〉 in the numerator, and in the cyclic factors in the denominator, is given by

eq. (5.3). Using δ(8)(A)δ(8)(B) = δ(8)(A)δ(8)(A + B) and the invariance of
∑n

i=1|i〉ηia from

eq. (4.8), we obtain

FNMHV
n =

∑

diagrams α

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1) P 2
α cyc(I2)

4
∏

a=1

∑

i∈α

〈iPα〉η̂ia

∣

∣

∣

∣

z=zα

. (5.5)

Since all factors of [P̂α X] cancel, we used the CSW prescription

|P̂α〉 → Pα|X] = |Pα〉 (5.6)

for all occurrences of |P̂α〉 in the numerator and the cyclic factors in the denominator of

eq. (5.5).

Let us now examine the effect of the shifted η̂ia in eq. (5.5). We find

∑

i∈α

〈iPα〉η̂ia

∣

∣

∣

∣

z=zα

=
∑

i∈α

〈iPα〉ηia + zα

∑

i∈α

ci〈iPα〉ηXa =
∑

i∈α

〈iPα〉ηia + P 2
α ηXa , (5.7)

– 20 –



J
H
E
P
0
5
(
2
0
0
9
)
0
7
2

Figure 3. A diagram α of the all-line supershift recursion relation of an N2MHV generating

function. The super MHV vertex expansion is substituted for the NMHV subamplitude, and the

internal line Pβ of the super MHV vertex diagram is evaluated at shifted momenta.

where we inserted zα from eq. (5.2) in the last step. We obtain

FNMHV
n =

∑

diagrams α

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1) P 2
α cyc(I2)

4
∏

a=1

[

∑

i∈α

〈iPα〉ηia + P 2
α ηXa

]

. (5.8)

We have thus reproduced F̃NMHV
n (ηia; ηXa) given in eq. (3.11), i.e.the form of the NMHV

generating function associated with the super MHV vertex expansion.

5.3 N2MHV generating function

Let us now use eq. (5.1) to determine the generating function at the N2MHV level. One sub-

amplitude is again MHV, for which we use the MHV generating function in the form (2.3).

For the NMHV subamplitude, it is crucial that we use the generating function (5.8) associ-

ated with the super MHV vertex expansion, and that we use the same reference parameters

|X], ηXa in the generating function as in the all-line supershift. The NMHV generating

function contains a sum over channels which we denote by β. The propagator line Pα is an

“external” line of the NMHV subamplitude, but we choose β to not include this line (Pα /∈

β), so that both α and β only contain external lines of the full amplitude (see figure 3).
A short calculation analogous to that in ref. [6] gives

FN2MHV
n =

∑

α,β

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)cyc(I2)cyc(I3)

1

P 2
α P̂ 2

β (zα)

4
∏

a=1

[

∑

i∈α

〈i Pα〉η̂ia

][

∑

i∈β

〈i Pβ〉η̂ia + P̂ 2
β (zα) ηXa

]

.

(5.9)

Note that the angle brackets 〈i Pβ〉 (including those implicit in cyc(I2) and cyc(I3)) are

unaffected by the shift because

|P̂β(zα)〉 = P̂β(zα)|X] = Pβ|X] + zα

∑

i∈β

ci|i〉[XX] = Pβ|X] = |Pβ〉 . (5.10)

To simplify the last factor in eq. (5.9), we employ the crucial identity

∑

i∈β

〈i Pβ〉η̂ia + P̂ 2
β (zα)ηXa =

∑

i∈β

〈i Pβ〉ηia + P 2
β ηXa , (5.11)
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where we used

zα

∑

i∈β

〈i Pβ〉 + P̂ 2
β (zα) = P 2

β . (5.12)

Note that the identity (5.11) relies on the fact that the all-line supershift recursion relation
and the NMHV generating function for the subamplitude are based on the same reference
parameters |X] and ηXa. We can then rewrite eq. (5.9) as

FN2MHV
n =

∑

α,β

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)cyc(I2)cyc(I3)

1

P 2
αP̂ 2

β (zα)

4
∏

a=1

[

∑

i∈α

〈i Pα〉ηia+P 2
α ηXa

][

∑

i∈β

〈i Pβ〉ηia+P 2
β ηXa

]

.

(5.13)

Symmetrizing the sum in α ↔ β and using the identity [21]

1

P 2
αP̂ 2

β (zα)
+

1

P̂ 2
α(zβ)P 2

β

=
1

P 2
αP 2

β

, (5.14)

we find

FN2MHV
n =

1

2

∑

α,β

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)cyc(I2)cyc(I3)

1

P 2
αP 2

β

4
∏

a=1

[

∑

i∈α

〈iPα〉ηia + P 2
αηXa

][

∑

i∈β

〈iPβ〉ηia + P 2
βηXa

]

.

(5.15)

As there was no restriction on our original sum over α, we are counting each distinct MHV

vertex diagram twice in eq. (5.15). The factor of 1
2 compensates this overcounting. We

then have (after relabeling α → α1 and β → α2)

FN2MHV
n =

∑

MHV diagrams

{α1,α2}

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1)cyc(I2)cyc(I3)

2
∏

A=1

1

P 2
αA

4
∏

a=1

[

∑

i∈αA

〈i PαA
〉ηia + P 2

αA
ηXa

]

.

(5.16)

We have thus derived the super MHV vertex expansion (3.31) at the N2MHV level.

5.4 All tree amplitudes

The generalization to the NkMHV generating function with k ≥ 3 is straightforward. We

continue inductively in k, plugging in the super MHV vertex expansion for the NqMHV

subamplitudes (q < k) in the recursion relation (5.1). We use the same reference parameters

|X], ηXa in the subamplitudes as in the all-line supershift recursion relation. The proof

proceeds precisely as in ref. [6], except that we need to use the identity (5.11) for all channels

β1, . . . , βq appearing in an NqMHV subamplitude. The only remaining shift dependence

then resides in the propagators, and using the identity [6, 21]

k
∑

A=1

1

P̂ 2
α1

(zαA
) · · · P̂ 2

αA−1
(zαA

)P 2
αA

P̂ 2
αA+1

(zαA
) · · · P̂ 2

αk
(zαA

)
=

1

P 2
α1

· · ·P 2
αk

, (5.17)

we obtain the generating function

FNMHV
n (ηia) =

∑

MHV diagrams

{α1,...,αk}

δ(8)
(
∑n

i=1 |i〉ηia

)

cyc(I1) · · · cyc(Ik+1)

k
∏

A=1

1

P 2
αA

4
∏

a=1

[

∑

i∈αA

〈iPαA
〉ηia + P 2

αA
ηXa

]

.

(5.18)
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This generating function coincides with the super MHV vertex expansion (3.31), and com-

pletes our derivation.

As a consistency check, one can show that the super MHV vertex expansion imme-

diately implies the 1/zk falloff of NkMHV generating functions under all-line supershifts.

This check is carried out in appendix A.2.

6 Discussion

In this paper we have presented a new family of representations for the generating functions

of N = 4 SYM theory, the super MHV vertex expansion. The diagrams of this family of

representations depend on a reference spinor |X] and on four reference Grassmann param-

eters ηXa, which may be chosen arbitrarily. We have shown that the super MHV vertex

expansion arises both from a particular supersymmetry transformation on the ordinary

MHV vertex expansion, and from the recursion relations associated with holomorphic all-

line supershifts. This family of shifts similarly depends on reference parameters |X] and

ηXa, which then results in the dependence of the super MHV vertex expansion on these

parameters. The ordinary MHV vertex expansion corresponds to the special case ηXa = 0,

but certain non-trivial choices for ηXa can significantly reduce the number of diagrams

contributing to the expansion and thus simplify the task of computing amplitudes.

The efficient computation of on-shell tree amplitudes of N = 4 SYM theory has various

applications. For example, tree amplitudes are an important ingredient for the computation

of loop amplitudes using (generalized) unitarity cuts [22–31]. The scattering amplitudes

of N = 4 SYM theory are of particular interest, as the AdS/CFT correspondence permits

insights into their strong coupling behavior (see e.g. [32] and references therein).

Another application is the computation of on-shell tree amplitudes of N = 8 super-

gravity, which can be expressed in terms of N = 4 SYM amplitudes through the KLT

relations [33]. They then also play an important role in the study of N = 8 supergravity

at loop level [34]. Loop amplitudes in N = 8 supergravity exhibit surprising proper-

ties [16, 35–38], and their UV behavior has recently been under intense investigation due

to the possible perturbative finiteness of the theory [31, 34, 39–45].

KLT relations can be used to relate not only the on-shell tree amplitudes of N = 8

supergravity and N = 4 SYM, but their generating functions as well. Very recently, this

was carried out in [46] using the generating functions [13] based on dual superconformal

symmetry [12, 15, 19, 47–57], and using the KLT relations in the form of ref. [58]. The

final expression for the resulting N = 8 supergravity generating function contained far

fewer terms than naively expected [46]. It would be interesting to see whether a similar

simplification occurs when the generating function of the N = 4 (super) MHV vertex

expansion is used to determine an N = 8 supergravity generating function via KLT.

It would also be interesting to find generating functions for N = 8 supergravity ampli-

tudes directly from N = 8 recursion relations. To derive recursion relations, one needs to

determine shifts (or supershifts) under which an amplitude (or generating function) van-

ishes as the deformation parameter z is taken to infinity. N = 8 supergravity amplitudes

generically do not vanish under holomorphic shifts when the number n of external lines

becomes large. In fact, under holomorphic shifts, amplitudes go as zn−ℓ for some integer ℓ.
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For example, pure-graviton NMHV amplitudes go as zn−12 under a holomorphic shift of the

three negative helicity graviton lines [10, 59]. The MHV vertex expansion for gravity [21]

is then not valid for graviton NMHV amplitudes with n ≥ 12 external lines. The falloff

becomes even worse for more general external states, and the MHV vertex expansion in

N = 8 supergravity has not even been established for general 5-point NMHV amplitudes,

and has been shown to fail for certain scalar amplitudes at the 6-point level.

In this paper, we found that holomorphic all-line supershifts with suitably chosen shift

parameters yield 1/zk+4 suppression for anti-MHV amplitudes in N = 4 SYM theory.

This immediately implies, via the KLT relations, that N = 8 supergravity anti-MHV

generating functions with n > 4 external legs go at least as zn−11−2k = z−n−3 under a

suitable holomorphic all-line supershift. A valid recursion relation, namely the super MHV

vertex expansion for N = 8 supergravity, can thus be derived at the anti-MHV level.11 It

would be interesting to determine the precise form of this expansion, and to study the sum

rules implied by ηXa independence.12 It would be particularly interesting to see whether

the improved falloff of 1/zk+4 in N = 4 SYM theory, and thus the improved falloff of at

least zn−11−2k in N = 8 supergravity, can be generalized beyond the anti-MHV level. If

so, the validity of a super MHV vertex expansion for N = 8 supergravity could also be

extended beyond the anti-MHV level.

In this paper, we presented the super MHV vertex expansion as an on-shell recursion

relation associated with a complex shift. Various off-shell approaches, however, have also

proved useful to gain insights into the ordinary MHV vertex expansion [61–70]. It would

be interesting to see whether the super MHV vertex expansion has a natural interpretation

in an off-shell framework.
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A Large-z falloff under holomorphic all-line supershifts

A.1 FNkMHV
n ∼ 1/zk using the super BCFW recursion relations

In this appendix we outline the derivation of the 1/zk falloff of NkMHV generating func-

tions under holomorphic all-line supershifts using the supersymmetric generalization of the

BCFW recursion relation [13–16]. This generalizes the derivation of ref. [6] from ordinary

all-line shifts to all-line supershifts.

The 1/zk falloff of the NkMHV generating function FNkMHV
n (ηia) under an ordinary

all-line shift was derived in ref. [6] by recursively studying the behavior of the BCFW

representation of NkMHV amplitudes. The inductive argument presented there relied on

three facts:

1. Each N = 4 SYM amplitude admits at least one valid BCFW recursion relation [5,

71, 72] .

2. An all-line shift on an amplitude acts, to leading order in z, as an all-line shift on

the subamplitudes of each diagram in its BCFW representation.

3. The falloff of 1/zk is valid for all MHV and anti-MHV amplitudes.

As a generalization of this argument, we now use the super BCFW recursion relations to

study the behavior of generating functions under all-line supershifts. It suffices to repeat

steps (1)–(3) for this case, and we will now briefly outline how this is done.

As shown in ref. [16], all generating functions vanish at large z under a super BCFW

shift (4.2) for any choice of two lines p and q, and thus admit a valid super BCFW recursion

relation. This establishes the analog of (1).

For (2), we need to show that an all-line supershift on the entire generating function

acts, to leading order in z, as an all-line supershift on the subamplitudes of each diagram

in the super BCFW representation. Notice that the kinematics are unaltered compared to

the ordinary all-line shift, and the analysis of ref. [6] thus establishes that the angle and

square brackets of the super BCFW subamplitudes are subject to a holomorphic all-line

supershift. In particular, it follows from ref. [6] that the square spinor associated with the

internal line of momentum Pα in a [p, q〉 super BCFW recursion relation shifts as

|Pα] → zcPα |X] + O(1), with cPα =
∑

i∈α

ci
〈pi〉

〈pq〉
(A.1)

under the all-line supershift. It remains to analyze the dependence of the super BCFW

subamplitudes on the Grassmann variables. We recall from eq. (4.8) that all-line supershifts

are designed to leave the argument of the overall δ(8) in the generating function invariant.

For any super BCFW diagram characterized by an internal line of momentum Pα , it is

easy to show that the change in the argument of the δ(8) of either of its subamplitudes is

O(1) under the all-line supershift provided that the Grassmann variable associated with

the internal line undergoes the shift

ηPαa → ηPαa + z cPαηXa , (A.2)
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where cPα is defined in eq. (A.1). The Grassmann variables ηPαa are integrated over to carry

out the intermediate state sum in the super BCFW diagram. Therefore, the shift (A.2)

can be implemented as a change of variables in the Grassmann integral over ηPαa. After

this change of variables, an all-line supershift on the whole amplitude manifestly acts, to

leading order, as an all-line supershift on the super BCFW subamplitudes. This establishes

the analog of (2).

The analog of (3), i.e.the 1/zk behavior of MHV and anti-MHV generating functions

under all-line supershifts, was established in section 4.1. The inductive argument of ref. [6]

for ordinary all-line shifts thus carries over to the case of supershifts.

A.2 FNkMHV
n ∼ 1/zk using the super MHV vertex expansion

In this paper, we have seen the super MHV vertex expansion emerge from two different

approaches: first, in section 3, as a supersymmetry transformation of the ordinary MHV

vertex expansion, and second, in section 5, as the recursion relation implied by all-line

supershifts. In this appendix we close the loop and show that the super MHV vertex

expansion immediately implies the 1/zk falloff of NkMHV generating functions under all-

line supershifts. This serves as another consistency check on our result.

Consider the action of an all-line supershift (4.7) on the n-point NkMHV generating

function. We choose to represent this generating function as the super MHV vertex

expansion (5.18) with the reference parameters |X] and ηXa chosen to coincide with

those of the supershift. Inspecting eq. (5.18), we find that all k propagators shift

as 1/P̂ 2
αA

∼ 1/z, giving 1/zk suppression. The cyclic factors in the denominator are

invariant because the CSW spinors |PαA
〉 are invariant by eq. (5.10). The spin factors

∑

i∈αA
〈i PαA

〉ηia + P 2
αA

ηXa in the numerator are also invariant, by the identity (5.11).

We thus find 1/zk suppression diagram-by-diagram in the super MHV vertex expansion,

and conclude that NkMHV generating functions fall off at least as 1/zk under all-line

supershifts. As we saw in section 4.1, the falloff can be even stronger for certain amplitudes

and shifts, but unfortunately the super MHV vertex expansion is not sensitive to this

stronger falloff, which arises through cancellations between diagrams.

This argument was, not surprisingly, simpler than the derivations of the 1/zk falloff

from the ordinary MHV vertex expansion and the super BCFW recursion relation that

we presented in section 4.2 and appendix A.1, respectively. Just as the 1/zk falloff under

ordinary all-line shifts was naturally shown from the ordinary MHV vertex expansion with

coinciding reference spinor in ref. [6], we have now done the same for all-line supershifts

using the super MHV vertex expansion with coinciding reference spinor and coinciding

reference Grassmann parameters.
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